



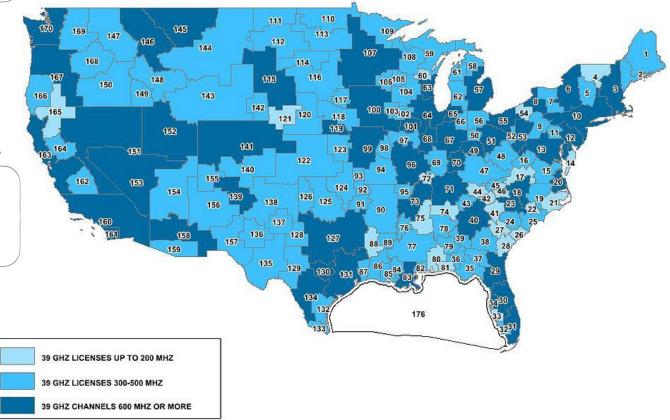
# **From Innovation to Transformation**

### Next Generation Mobile Broadband as the Infrastructure for a Connected World

Jerry Pi Chief Technology Officer Straight Path Communications Inc. March 12, 2015



### **Overview of Straight Path**


Incumbent operator in the mmW bands

- Extensive spectrum holdings in 39 GHz (828 licenses) and LMDS (133 licenses)
- Nationwide coverage
- Average 833 MHz in top 30 markets (39 GHz)
- Provide backhaul services to WISPs and MNOs

Business and technology innovator in mmW communication

- Developing fundamental technologies for next generation broadband and mobile communication in mmW bands
- Develop innovative business models that maximize the utilization of mmW spectrum

Straight Path Spectrum Holdings at 39 GHz





### The Big Picture – A Growing ICT Industry

#### Mobility

- 1G →2G→3G→4G→5G
- 11b→11g→11n→11ac & 11ad →11ax & NG60

#### Computing

• Mainframe → PC → Smartphone → Wearable → Sensor

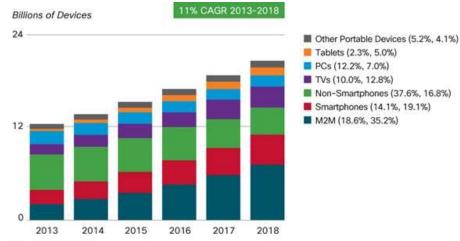
#### Internet

• Email → Web → Search → Social Network → Cloud Computing & IoT

#### Content

• Voice → Video → HD/UHD → 360° Video → Virtual Reality →...

#### **Big Data**


• Big data analytics, Deep Learning, ...

#### The Rise of Machines

• Remotely controlled and self-operating cars, drones, robots, ...

#### **Applications and Services**

- Think of anything? There is an app for that (If not, somebody will make one)
- Everything is possible (although not everything will be successful)



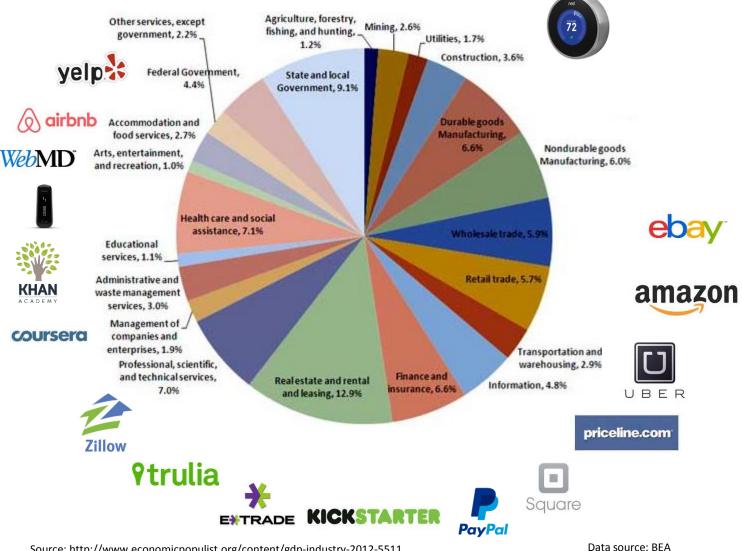
Source: Cisco VNI, 2014

The percentages in parentheses next to the legend denote the device share for the years 2013 and 2018, respectively.



Source: Cisco VNI, 2014

The percentages in parentheses next to the legend denote the device traffic shares for the years 2013 and 2018, respectively

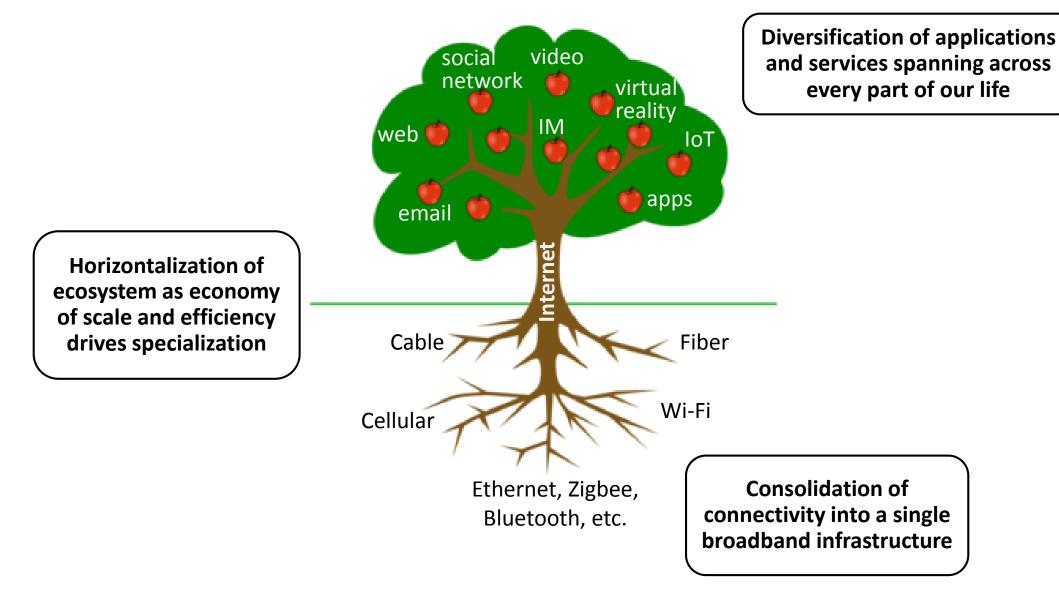


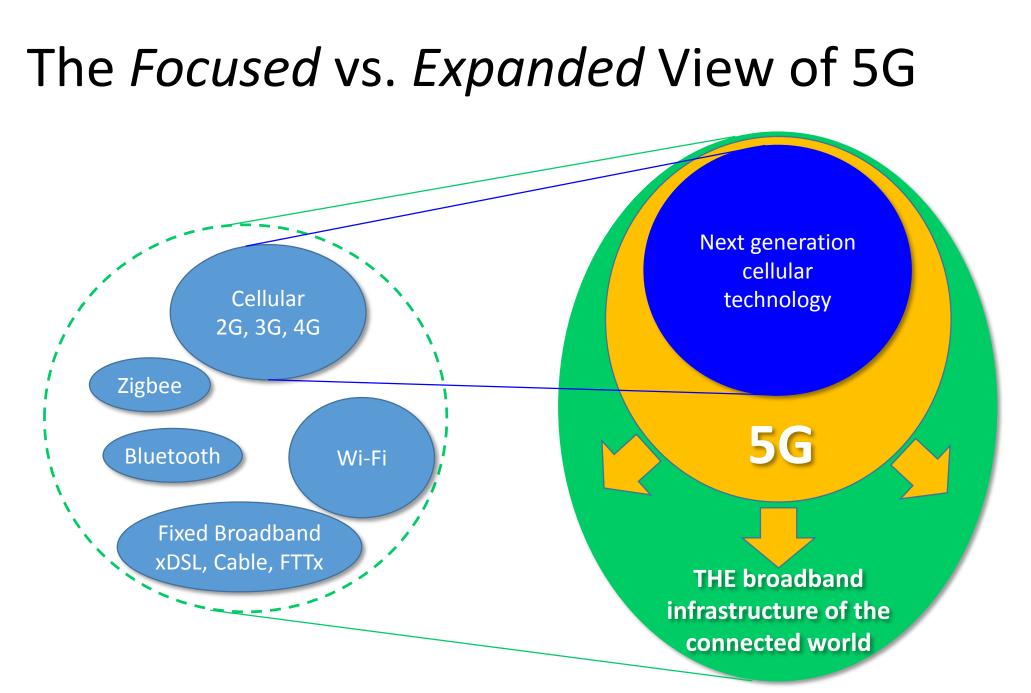

### The Bigger Picture - A Connected World

A rising tide lifts all boats

- ICT accounts for 4.8% of U.S. GDP (2012)
- ICT contributes to
  - 60% of U.S. total factor productivity growth in 1996 - 2007
  - Virtually all growth in labor productivity in U.S. in 1995 – 2002

The society, the economy, and our lives are being digitized, connected, and mobilized





Source: http://www2.itif.org/2014-raising-eu-productivity-growth-ict.pdf

Source: http://www.economicpopulist.org/content/gdp-industry-2012-5511

### Trends as the World Become Connected







Copyright © 2015 by Straight Path Communications Inc. All rights reserved.

STRAIGHTPATH

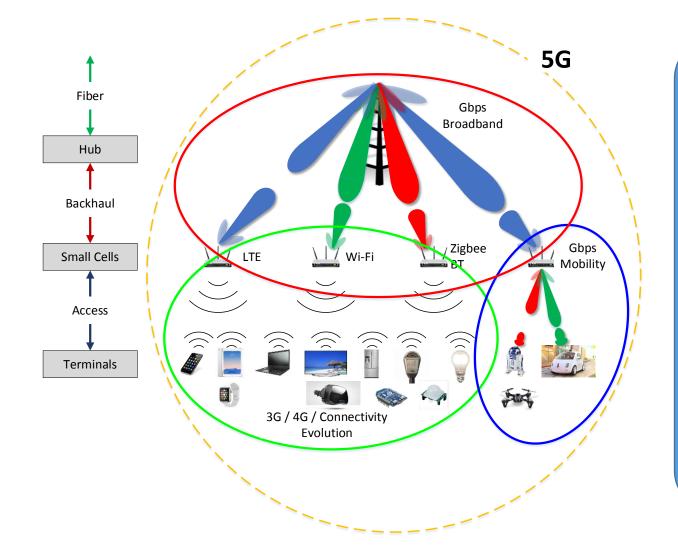


# 100 Giga Bps (& 100 Billion Devices)

In a nut shell

• 5G = 100 Giga bps (& 100 billion devices)

#### The challenges


- **Capacity** → How to achieve the 1000x capacity increase?
- Complexity → How to build the broadband infrastructure for all verticals, applications, and services with multiple radios and networks?
- Economics → How can we create value in achieving these overarching capacity and complexity goals?







## 5G Broadband Infrastructure

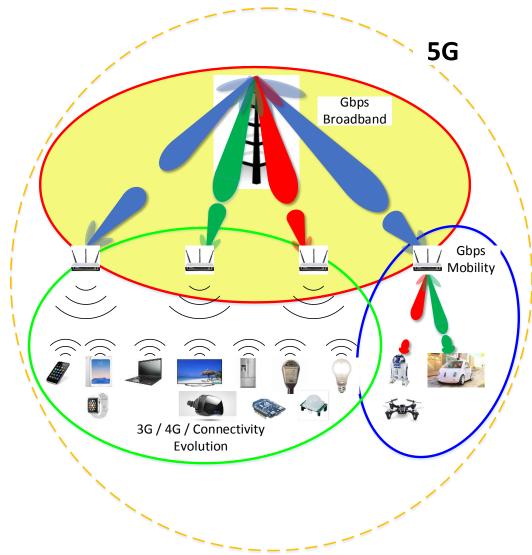


Gbps Broadband (& Backhaul)

#### **Gbps Mobility**

### Multi-Radio Access Technology Integration



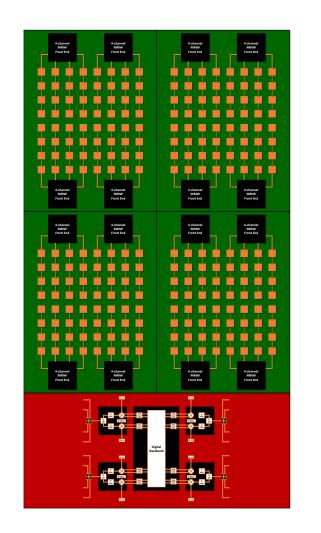

## **5G Key Technologies**

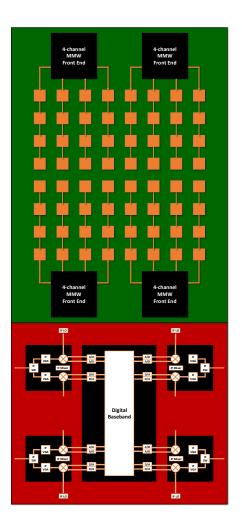


Strong Value Proposition and Great Synergy in Gbps Broadband and Gbps Mobility



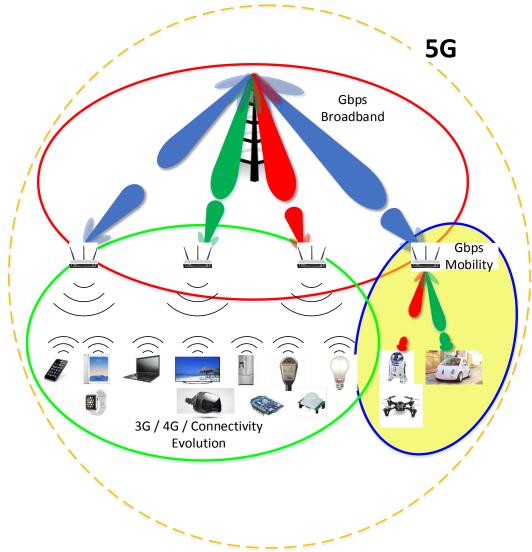
## Millimeter-wave Gbps Broadband





| 39 GHz Gbps Broadband link budget          | Downlink   | Uplink     | Downlink MU 4- | Uplink MU 4- |
|--------------------------------------------|------------|------------|----------------|--------------|
|                                            | long range | long range | Stream         | Stream       |
| PA output power (dBm)                      | 10         | 10         | 10             | 10           |
| Number of PAs                              | 64         | 16         | 64             | 16           |
| Total output power (dBm)                   | 28         | 22         | 28             | 22           |
| Number of Tx antenna element               | 256        | 64         | 256            | 64           |
| Tx antenna element gain (dB)               | 6          | 6          | 6              | 6            |
| Antenna & feed network loss (dB)           | 3          | 3          | 3              | 3            |
| Total Tx antenna array gain (dB)           | 27         | 21         | 27             | 21           |
| EIRP (dBm)                                 | 55.14      | 43.10      | 55.14          | 43.10        |
| Distance (m)                               | 1000       | 1000       | 707            | 707          |
| Carrier Frequency (GHz)                    | 39         | 39         | 39             | 39           |
| Reference point from transmitter (m)       | 1.00       | 1.00       | 1.00           | 1.00         |
| Pathloss exponent                          | 2.00       | 2.00       | 2.00           | 2.00         |
| Propagation loss (dB)                      | 124.26     | 124.26     | 121.25         | 121.25       |
| Additional pathloss - 50 mm/hr rain (dB)   | 15.00      | 15.00      | 10.61          | 10.61        |
| Total path loss (dB)                       | 139.26     | 139.26     | 131.86         | 131.86       |
| Received power (dBm)                       | -84.12     | -96.16     | -76.71         | -88.75       |
| Bandwidth (MHz)                            | 300        | 300        | 300            | 300          |
| Thermal noise (dBm)                        | -89.23     | -89.23     | -89.23         | -89.23       |
| Noise Figure (dB)                          | 7.00       | 7.00       | 7.00           | 7.00         |
| SNR (dB) per Rx antenna element            | -1.89      | -13.93     | 5.52           | -6.52        |
| Number of Rx antenna element               | 64         | 256        | 64             | 256          |
| Rx antenna element gain (dB)               | 6          | 6          | 6              | 6            |
| Rx antenna feed network loss (dB)          | 3          | 3          | 3              | 3            |
| Total Rx antenna array gain (dB)           | 21         | 27         | 21             | 27           |
| Number of MIMO streams                     | 1          | 1          | 4              | 4            |
| SNR after beamforming per MIMO stream (dB) | 19.17      | 13.15      | 14.54          | 14.54        |
| Implementation loss (dB)                   | 3.00       | 3.00       | 3.00           | 3.00         |
| Spectral efficiency (bit/channel use)      | 5.41       | 3.51       | 15.72          | 15.72        |
| Throughput throughput (Mbps)               | 1,622      | 1,052      | 4,717          | 4,717        |



# Gbps Broadband Hub and CPE

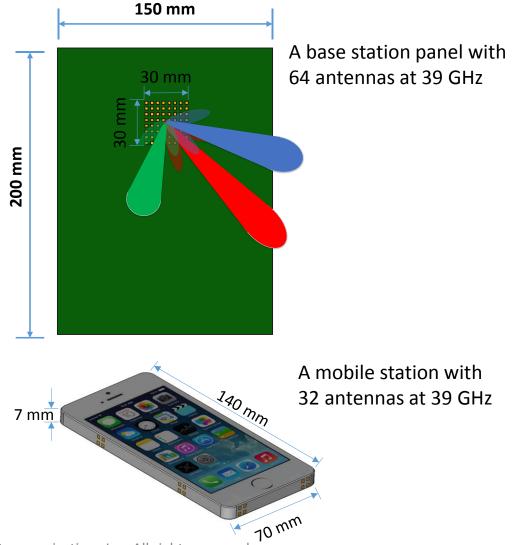

- Hub (example)
  - EIRP: 55 dBm
  - Antenna array
    - 256 elements / panel
  - Power Amplifier
    - 10 dBm / PA
    - 64 PAs
- CPE (example)
  - EIRP: 43 dBm
  - Antenna array
    - 64 elements / array
  - Power Amplifier
    - 10 dBm / PA
    - 16 PAs







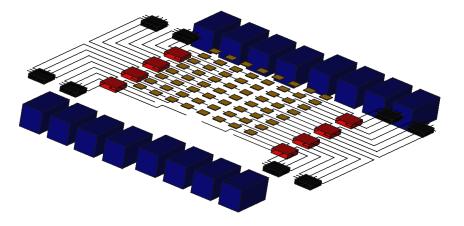
## Millimeter-wave Gbps Mobility

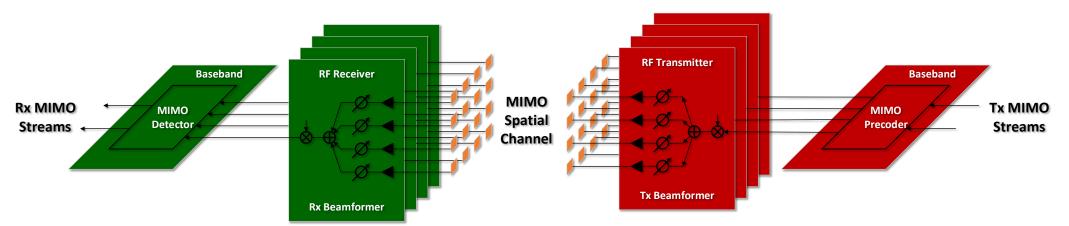



| 39 GHz mobile network link budget     | Downlink  | Uplink    | Downlink    | Uplink      |
|---------------------------------------|-----------|-----------|-------------|-------------|
|                                       | cell edge | cell edge | cell center | cell center |
| PA output power (dBm)                 | 20        | 18        | 20          | 18          |
| Number of PAs                         | 64        | 16        | 64          | 16          |
| Total output power (dBm)              | 38        | 30        | 38          | 30          |
| Number of Tx antenna element          | 256       | 16        | 256         | 16          |
| Tx antenna element gain (dB)          | 6         | 6         | 6           | 6           |
| Antenna & feed network loss (dB)      | 3         | 5         | 3           | 5           |
| Total Tx antenna array gain (dB)      | 27        | 13        | 27          | 13          |
| EIRP (dBm)                            | 65.14     | 43.08     | 65.14       | 43.08       |
| Distance (m)                          | 500.00    | 500.00    | 100.00      | 100.00      |
| Path loss = 72 + 29.2log10(d) (dB)    | 150.81    | 150.81    | 130.40      | 130.40      |
| Received power (dBm)                  | -85.67    | -107.73   | -65.26      | -87.32      |
| Bandwidth (MHz)                       | 500.00    | 500.00    | 500.00      | 500.00      |
| Thermal noise (dBm)                   | -87.01    | -87.01    | -87.01      | -87.01      |
| Noise Figure (dB)                     | 7.00      | 5.00      | 7.00        | 5.00        |
| SNR (dB) per Rx antenna element       | -5.66     | -25.72    | 14.75       | -5.31       |
| Number of Rx antenna element          | 16        | 256       | 16          | 256         |
| Rx antenna element gain (dB)          | 6         | 6         | 6           | 6           |
| Rx antenna feed network loss (dB)     | 5         | 3         | 5           | 3           |
| Total Rx antenna array gain (dB)      | 13        | 27        | 13          | 27          |
| SNR after beamforming (dB)            | 7.39      | 1.37      | 27.80       | 21.78       |
| Implementation loss (dB)              | 3.00      | 3.00      | 3.00        | 3.00        |
| Number of MIMO streams                | 1         | 1         | 8           | 8           |
| Spectral efficiency (bit/channel use) | 1.91      | 0.75      | 42.20       | 27.06       |
| System overhead                       | 40%       | 40%       | 40%         | 40%         |
| Duty cycle                            | 62.50%    | 37.50%    | 62.50%      | 37.50%      |
| Throughput throughput (Mbps)          | 357.20    | 84.81     | 7912.07     | 3044.15     |



# Gbps Mobility Base and Mobile Station

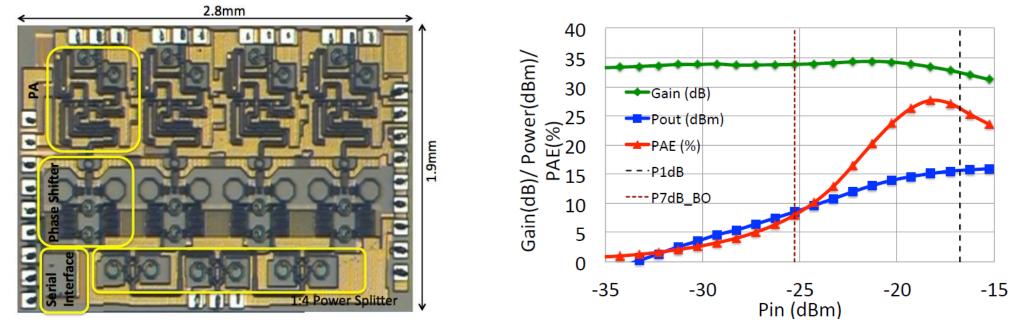

- Base Station
  - EIRP: 53 65 dBm
  - Antenna array
    - 64 256 elements / panel
  - Power Amplifier
    - 17 27 dBm / PA
    - 16 64 PAs
- Mobile Station
  - EIRP: 30 43 dBm
  - Antenna array
    - 4 32 elements / array
  - Power Amplifier
    - 10 20 dBm / PA
    - 4 16 PAs






### Hybrid Spatial Processing with Massive Antenna Arrays

- Antenna array Millimeter wave meets massive MIMO
  - Advances in high-frequency low-loss PCB materials (e.g., ceramic filled PTFE) makes it possible to design complicated mmW systems on a single PCB
  - Possible to include sophisticated passive filters and antennas on PCB due to advances in PCB fabrication and the small dimension of antenna elements
- How to deal with massive antenna arrays
  - Antenna sub-arrays Only keep the useful spatial DoF
  - Analog Beamforming Long term spatial characteristics
  - Digital Beamforming Short term spatial characteristics








## **Power Amplifiers**

- One or few big amplifiers → Lots of small amplifiers
- Higher integration and lower cost by using SiGe or GaAs
- Good linear PAE efficiency at mmWave frequencies (5 10%)
- Multi-element beamformer & PA an attractive solution for driving large antenna arrays



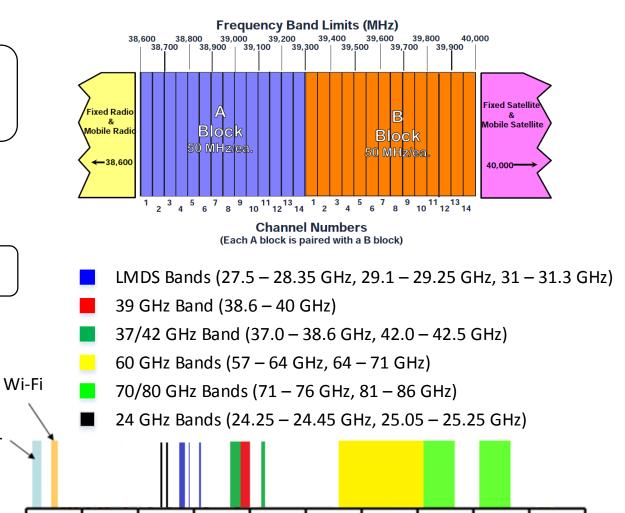
Reference: Sarkar, A.; Greene, K.; Floyd, B., "A power-efficient 4-element beamformer in 120-nm SiGe BiCMOS for 28-GHz cellular communications," *Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2014 IEEE*, vol., no., pp.68,71, Sept. 28 2014-Oct. 1 2014



# 5G Gbps Mobility in the Making






# Spectrum, Spectrum, Spectrum

Millimeter-wave Spectrum for Gbps Broadband available today

- LMDS band (1.3 GHz) & 39 GHz band (1.4 GHz)
- Exclusively licensed in geographic service areas

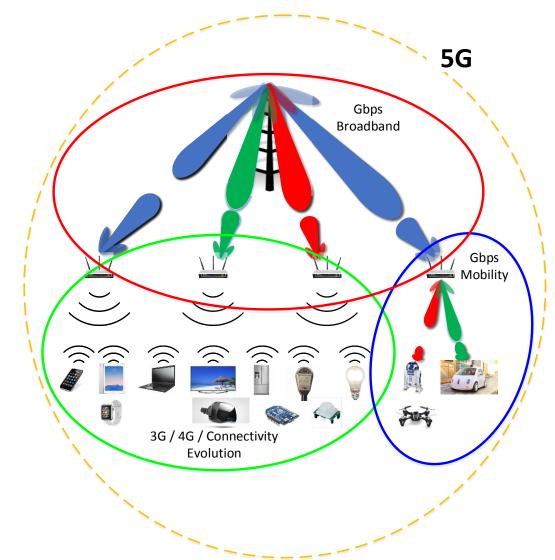
Millimeter-wave Spectrum for Gbps Mobility

- FCC issued NOI for 5G mobile services on 10/17/2014
  - 6 bands under discussion
- Comments closed on 1/15/2015
  - 48 comments received
- Reply comments closed on 2/18/2015
  - 18 reply comments received
- Overwhelming support of using millimeter wave spectrum for 5G mobile services



0 GHz 10 GHz 20 GHz 30 GHz 40 GHz 50 GHz 60 GHz 70 GHz 80 GHz 90 GHz 100 GHz

Cellular




## Network Transformation towards 5G

Multi-RAT integration to expand support for new applications & services

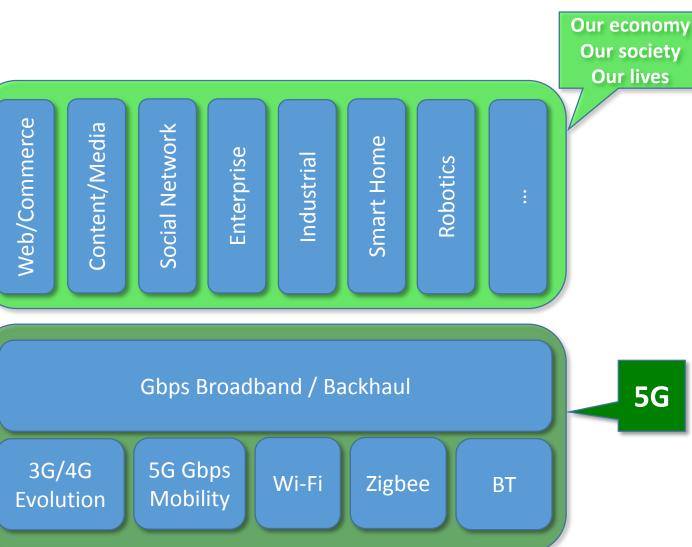
MMW Gbps Broadband to facilitate massive cell densification

MMW Gbps Mobility to strengthen value proposition and foster killer applications





# Summary


Our world is being digitized, connected, and mobilized

5G *can* be the communication infrastructure of this new world

Takeaway points in transforming the current networks into 5G

- Create value beyond existing applications services and integrate with radio access technologies that best suit the application
- Build a broadband infrastructure that is flexible, scalable, and cost effective
  - Significant technology and spectrum synergy between mmW Gbps Broadband and mmW Gbps Mobility
  - Spectrum and technology are available
    NOW for mmW Gbps Broadband





